The Gut and Autoimmunity

Heidi Turner, MS, RDN, CD
The Seattle Arthritis Clinic @ Northwest Hospital/UW Medicine
No conflicts here
Overview

- Thought process for assessing patients related to diet, inflammation and the gut
- Three pathways of inflammation related to diet
 1. Gluten, dairy and food sensitivity
 2. Histamines and inflammation
 3. Bacterial overgrowth/dysbiosis and gut inflammation
- Case Study
Pathway #1

Food Sensitivities: Gluten

- Elimination of potentially antigenic foods important in reducing GI inflammation
- Wheat and dairy most problematic, most consumed
- “Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in absence of Celiac Disease” (1)
- Increase in soluble CD14 and lipopolysaccharide-binding protein (1)
- Increase antibody reactivity to microbial antigens, indicating systemic immune activation (1)
- Elevated levels of fatty acid-binding protein that correlates with the markers of systemic immune activation, suggesting compromised intestinal epithelial barrier integrity. (1)
- Gliadin in wheat can increase intestinal permeability (2)
Pathway #1
Food Sensitivities: Dairy

- Lactose intolerance? Casein sensitivity?
- There is research indicating that certain dairy proteins can be inflammatory to the digestive tract
- Research on A1 vs A2 beta proteins (3-4)
- A1 protein derived from hybridization of Holstein and other cows
- A1 has potential to be most inflammatory to the intestinal lining
- A2 beta protein from Jersey, Guerney and other cows and others has been shown to be less reactive in those with dairy sensitivities
- Goat and sheep are all A2 which may be why we see less reactivity to this dairy
Pathway #2
Histamines

- Via H1-H4 receptors, histamines impact numerous systems (5-6)
Summary of histamine-mediated symptoms

Laura Maintz, and Natalija Novak Am J Clin Nutr 2007;85:1185-1196
Assessing for Histamines

Common Symptoms

- Year round allergy symptoms (rhinitis, itchy eyes)
- Worsening of symptoms with stress
- Urticaria
- Anxiety
- Insomnia
- GI issues common
- Episodes of tachycardia
- **Perimenopause**: Increase in hot flashes, insomnia, painful menses
- Worsening of pain with seasonal change
- Hypotension
- Headache/migraine
Cause and impact of histamines in RA

- Onset of symptoms typically during long period of stress, illness/infection, trauma. Often combined with perimenopause.

- Boiling pot effect, multiple situations occur at once

- Excessive histamine production can lead to multiple symptoms including swelling in joints, pain

- Research linking histamine (H4 receptors) to RA. \((7-8)\)

- H4 antagonist has reduced arthritic pain via reduction IL-17 in vitro. \((9)\)

- Studies have shown increase in H4R in synovial fluid cells. \((10)\)

- No reliable serum markers \((24\) hr urinary methylhistamine, tryptase, histamine, etc.)
Low histamine diet
Foods to remove

- Aged, fermented foods especially high in histamine
- Wine, cider, beer
- Aged meats/cheese/vinegar/pickled foods
- Tomatoes, eggplant, spicy peppers, spinach, pumpkin
- Citrus fruit, banana, avocado, strawberries, raspberries
- Most nuts
- Chocolate, more
Case Study: Histamine

- 36 yo female
- RA dx, seroneg. Onset post partum.
- Joint pain in thumb, wrist, shoulder; flares random lasting 3-4 day in duration
- GI: Daily diarrhea (watery, urgent). 11 year history of “sensitive stomach” after travel to Panama. GI workups normal.
- Sx worsen with menstruation, stress.
- Chronic allergy sx including itchy eyes, rhinitis
- HCQ reduced the intensity of pain. Declined Humira.
Case Study: 4-Week F/U

- After one day on low histamine diet, significant reduction in joint pain
- Diarrhea reduced in intensity, now soft stools mixed with episodes of diarrhea
- Introduced both histamines and wheat into the diet and found reactivity to both, so has kept out/low
- About 80% improvement in symptoms with joint flares less often, less intense. Still present.
Reducing histamine production

- Determine personal tolerance threshold to dietary histamines
- Reduction in stress, counseling, meditation
- For some women in perimenopause, progesterone replacement
- Medication? H1/H2 may not be effective
- Home environment, reducing potential allergens, chemical sensitivities
Reducing histamine production

- Filtered water critical
- Supplementation: Vitamin C, quercitin, stinging nettle, DAO
- Assessing for small intestinal bacterial overgrowth or dysbiosis
- Leading to Pathway #3…
Microbiome of the Small Intestine

- Average amount of bacteria in the small intestine in the 100,000’s

- Average amount of bacteria in the large intestine average is 100,000,000,000

- Bacteria in the small intestine present as part of immune system, help with nutrient digestion

- Keep balance of the small intestine through peristaltic waves and pH balance
Small Intestinal Bacterial Overgrowth

- When bacterial concentration increases above normal amounts

- Typical causes include post infectious gastroenteritis (food poisoning), c. Dif infection, long term use of PPI’s, antibiotics, long term stress, thyroid, IC valve disruption, adhesions

- Symptoms include severe flatulence/belch, abdominal bloat, constipation or diarrhea, heartburn.

- GI diagnostics typically negative. Dx: “IBS”
SIBO: Link to Autoimmunity

- Bacterial infection of c. Jejunii, Salmonella, e. Coli, c. Diff, Shigella can lead to increase in CdtB toxin (12)
- Triggers immune response to CdtB toxin → GI inflammation (12)
- CdtB toxins are structurally similar to vinculin, a protein that helps to manage the MMC (migrating motor complex) which helps to maintain motility (12)
- Molecular mimicry leads to creation of anti-Vinculin antibodies (12)
- Reduced motility leads to reduced peristaltic/cleansing waves, constipation, increase in bacterial concentration in SI (12,13)
Symptoms and effects

- Overgrowth increases hydrogen/methane gas and endotoxin in the GI causing intestinal bloat, inflammation (11)

- Those with IBS have been found to have intestinal intestinal permeability. Unclear relationship between SIBO and permeability. (14)

- Permeability can lead to translocation of bacteria and endotoxin (14)
Studies

Studies and published case studies linking SIBO to systemic inflammation.

- Rosacea (15)
- PMR (16)
- Sleep apnea (17)
- Hepatic encephalopathy and NAFLD (18)
- IBS (19)
- Parkinson’s Disease (20)
- Diabetes (21)
- Fibromyalgia (22)
- IBD (23)
- Pancreatitis (24)
- Prostatitis (25)
Hydrogen breath testing

- Current best way to diagnose bacterial overgrowth is through lactulose hydrogen breath testing (26)

- Available through UW Gastro, VM Gastro, Seattle Children’s (for peds only), Puget Sound Gastro Eastside, external clinics who specialize

- Test involves a special prep diet, fast and 3 hour breath collection after drinking lactulose solution

- Measures concentration of hydrogen and methane production in the small intestine

- Not perfect but best we currently have
Treatment options

- Antibiotics: Rifaximin (H2) Neomycin Sulfate (CH4) (11, 27, 28)
- Herbal antibiotics
- Medical food fast x 2 weeks (starve them out)
- f/u treatment with prokinetic (Erythromycin) 29
- Diet modification: Low FODMAP diet (30)
Diet for SIBO

- Low FODMAP/starch/sugar diet \(^{(30)}\)
- Reduces fuel for bacteria
- Similar to Paleo/AIP approach but low in fermentable fruits and vegetables
- Broccoli, cauliflower, brussels sprouts, cabbage, garlic, onion, apples, pears, stone fruits, lactose
- Diet consists of high animal protein, vegetable, fruit, nut, lactose-free dairy
The histamine connection

• Some species of bacteria have been shown to increase histamine production: (L. casei and L. bulgaricus) 31

• Others have shown to decrease histamines: L. rhamnosus, B. infantis, L. plantarum 32

• SIBO can contribute to histamine production and contribute to the boiling pot effect
Case Study Continued

- Patient’s RA pain improved on low histamine diet.
- Ordered hydrogen breath test
- Positive for hydrogen producing bacteria (37 ppm at 60 mins increasing to 92 ppm at 120 mins)
- Rifaximin: 550 mg tid x 14d
- f/u tx: Erythromycin 250 mg qhs ongoing
- Omit fodmaps, starches, limit histamines
First Hydrogen Breath Test

<table>
<thead>
<tr>
<th>Time</th>
<th>#1 H2 ppm</th>
<th>CH4</th>
<th>#2 H2 ppm</th>
<th>CH4 ppm</th>
<th>#3 H2 ppm</th>
<th>CH4 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 min</td>
<td>3</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 min</td>
<td>5</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 min</td>
<td>37</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 min</td>
<td>94</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 min</td>
<td>68</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 min</td>
<td>92</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140 min</td>
<td>113</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 min</td>
<td>139</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 min</td>
<td>119</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complete cessation of joint pain, diarrhea during the antibiotics

2 weeks post tx: Return of diarrhea, joint pain completely abated

Tx: Rifaximin 550 mg tid x 14 d

2 weeks post tx: Stools firm, with only occasional diarrhea, joint pain abated

Ordered follow up HBT
Second Hydrogen Breath Test

<table>
<thead>
<tr>
<th>Time</th>
<th>#1 H2 ppm</th>
<th>CH4 ppm</th>
<th>#2 H2 ppm</th>
<th>CH4 ppm</th>
<th>#3 H2 ppm</th>
<th>CH4 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2</td>
<td><2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 min</td>
<td>3</td>
<td><2</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 min</td>
<td>5</td>
<td><2</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 min</td>
<td>37</td>
<td><2</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 min</td>
<td>94</td>
<td><2</td>
<td>27</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 min</td>
<td>68</td>
<td><2</td>
<td>27</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 min</td>
<td>92</td>
<td><2</td>
<td>30</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140 min</td>
<td>113</td>
<td><2</td>
<td>40</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 min</td>
<td>139</td>
<td><2</td>
<td>58</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 min</td>
<td>119</td>
<td><2</td>
<td>74</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ongoing Treatment

- Garlic/oil of oregano, probiotics (lactobacillus GG)
- Erythromycin 250 mg ¼ cap qhs ongoing. Will likely maintain long term.
- f/u HBT still positive, but continues to improve
- Rotational herbals (garlic/oo).
- Patient continues to do well with no joint pain or diarrhea
- Dc’d HCQ without return of joint pain
- Slight joint flares with menstruation, which she keeps under control with reduced dietary histamines
- Back to grains and FODMAP’s without issue
- Self-managed currently
Third Hydrogen Breath Test

<table>
<thead>
<tr>
<th>Time</th>
<th>H2 ppm</th>
<th>CH4</th>
<th>H2 ppm</th>
<th>CH4 ppm</th>
<th>H2 ppm</th>
<th>CH4 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2</td>
<td><2</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>20 min</td>
<td>3</td>
<td><2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>40 min</td>
<td>5</td>
<td><2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>60 min</td>
<td>37</td>
<td><2</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>80 min</td>
<td>94</td>
<td><2</td>
<td>27</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>100 min</td>
<td>68</td>
<td><2</td>
<td>27</td>
<td>8</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>120 min</td>
<td>92</td>
<td><2</td>
<td>30</td>
<td>7</td>
<td>44</td>
<td>15</td>
</tr>
<tr>
<td>140 min</td>
<td>113</td>
<td><2</td>
<td>40</td>
<td>9</td>
<td>39</td>
<td>16</td>
</tr>
<tr>
<td>160 min</td>
<td>139</td>
<td><2</td>
<td>58</td>
<td>11</td>
<td>56</td>
<td>17</td>
</tr>
<tr>
<td>180 min</td>
<td>119</td>
<td><2</td>
<td>74</td>
<td>10</td>
<td>50</td>
<td>16</td>
</tr>
</tbody>
</table>
Observations and Patterns

- Clinically, I have observed prevalence of bacterial overgrowth in patients with EDS, Scleroderma, Crohns, Rheumatoid Arthritis, Ankylosing Spondylitis, reactive arthritis and undetermined inflammatory arthritis.

- Treating bacterial overgrowth doesn’t always reduce symptoms of joint pain/inflammation but can improve quality of life by improving intestinal function especially in those debilitated by chronic diarrhea or constipation.

- Severe constipation can increase lower back pain.

- Those with histamine issues don’t always have bacterial overgrowth and vice versa.
Conclusion

- There is a correlation between diet and inflammation. Food sensitivities, histamines in foods, or the nutrients that feed bacteria can all impact inflammation in the gut.

- Histamines may impact inflammation that leads to inflamed joints and other allergy symptoms. Low histamine diet and stress reduction can help.

- Bacterial overgrowth or dysbiosis can increase gases, histamines and endotoxin production that can increase gut permeability, food sensitivities and may increase systemic inflammation.

- If patient not responding to Rx treatment, look at other symptoms related to allergy or GI that could help you consider another pathway of inflammation.

- If patient has excessive IBS sx, refer to GI doc who specializes in SIBO for treatment or RDN in private practice to help make dietary change
Thank you!

- Heidi Turner, MS, RDN
- The Seattle Arthritis Clinic @ Northwest Hospital/UW Medicine
- www.theseattlearthritisclinik.com
References

Gluten and gut/systemic inflammation

Dairy and gut inflammation

- (3) Jiangin ES, et al. (2016) Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr J Apr 2;15:35
Overview on histamine intolerance

References

Histamines and Rheumatoid Arthritis

• (10) Nent E et al, Histamine 4 receptor plays an important role in auto antibody induced arthritis, *Int Immunol*, 2013 Jul; 25(7): 437-43
References

SIBO overview

References

SIBO/GI and Autoimmunity

SIBO and intestinal permeability

References: SIBO

SIBO and Systemic Inflammatory Conditions

• (15) Agnoletti, AF Pathogenesis of rosacea: a prospective study with three year follow up, G Ital dermatol Venereol, 2016 Feb 18

• (17) Weinstock, LB et al Identification and treatment of new inflammatory triggers for complex regional pain syndrom: small intestinal bacterial overgrowth and obstructive sleep apnea; AA Case Rep, 2016 May 1; 6(9):272-76

• (18) Kapil, S et al, Small intestinal bacterial overgrowth and toll like receptor signaling in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol, 2016 Jan; 31(1):213-21

References

SIBO and other conditions

- (20) Fasano A et al, (2013) The role of small intestinal bacterial overgrowth in Parkinson’s Disease, Mov Disord, Aug;28(9):1241-9

- (22) Pimentel, et al (2004), A link between irritable bowel syndrome and fibromyalgia may be related to findings on lactulose breath testing, Ann Rheum Dis Apr;63(4):450-2

References

SIBO and other inflammatory conditions

SIBO and breath testing

References

SIBO and Antibiotics

SIBO and low FODMAP diet

References

Bacteria that increase/decrease histamines

References

Histamines and Autoimmunity (cont)

Herbal remedies to reduce mast cell activation, histamine production

References

Diet and Microbiome

• Silvio et al. Diet, Microbiota and Autoimmune Disease, *Lupus*, 2014 May; 23(6): 518-526